Certain Minimal Varieties Are Set-Theoretic Complete Intersections

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

2 1 Se p 20 05 Certain minimal varieties are set - theoretic complete intersections

We present a class of homogeneous ideals which are generated by monomials and binomials of degree two and are set-theoretic complete intersections. This class includes certain reducible varieties of minimal degree and, in particular, the presentation ideals of the fiber cone algebras of monomial varieties of codimension two.

متن کامل

On toric varieties which are almost set-theoretic complete intersections

We describe a class of affine toric varieties V that are set-theoretically minimally defined by codimV + 1 binomial equations over fields of any characteristic.

متن کامل

SET-THEORETIC COMPLETE INTERSECTIONS IN CHARACTERISTIC p

We describe a class of toric varieties which are set-theoretic complete intersections only over fields of one positive characteristic p.

متن کامل

Which Schubert varieties are local complete intersections?

We characterize by pattern avoidance the Schubert varieties for GLn which are local complete intersections (lci). For those Schubert varieties which are local complete intersections, we give an explicit minimal set of equations cutting out their neighborhoods at the identity. Although the statement of our characterization only requires ordinary pattern avoidance, showing that the Schubert varie...

متن کامل

Almost set-theoretic complete intersections in characteristic zero

We present a class of toric varieties V which, over any algebraically closed field of characteristic zero, are defined by codim V +1 binomial equations .

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Communications in Algebra

سال: 2007

ISSN: 0092-7872,1532-4125

DOI: 10.1080/00927870701302099